lunes, 24 de marzo de 2014

Los ríos juegan un papel decisivo en el deshielo marino del Ártico


El calor de las aguas de los ríos que drenan el Océano Ártico está contribuyendo al derretimiento de hielo marino del Ártico cada verano, según ha constatado un nuevo estudio de la NASA.

Diseñan "materiales vivos" a base de células de bacterias


Inspirado en materiales naturales como el hueso, una mezcla de minerales y otras sustancias, incluidas células vivas, ingenieros del Instituto de Tecnología de Massachusetts (MIT, por sus siglas en inglés), en Estados Unidos, han inducido células bacterianas para producir biofilms o biopelículas (comunidades de microorganismos que crecen adheridos a una superficie inerte o un tejido vivo) que pueden incorporar materiales no vivos, como nanopartículas de oro y puntos cuánticos.

Estos "materiales vivos" combinan las ventajas de las células vivas, que responden a su entorno, producen moléculas biológicas complejas y abarcan múltiples escalas de longitud, con las ventajas de los materiales no vivos, que añaden funciones tales como generar electricidad o emitir luz, tal y como se describe en la edición de este domingo de 'Nature Materiales'.

Los nuevos materiales representan una sencilla demostración de la potencia de este enfoque, que algún día podría usarse para diseñar dispositivos más complejos como células solares, materiales de autocuración o sensores de diagnóstico, afirma el autor principal del artículo,Timothy Lu, profesor asistente de Ingeniería Eléctrica e Ingeniería Biológica.

"Nuestra idea es poner al mundo vivo y no vivo juntos para hacer materiales híbridos que tengan células vivas en ellos y sean funcionales", destaca Lu. "Es una manera interesante de pensar acerca de la síntesis de materiales, algo muy diferente de lo que se hace ahora, que es generalmente un enfoque de arriba hacia abajo", agrega.

Lu y sus colegas eligieron trabajar con la bacteria 'E. Coli' porque produce naturalmente biopelículas que contienen las llamadas "fibras curly", proteínas amiloides que ayudan a 'E. Coli' a adherirse a las superficies. Cada fibra curly está hecha de una cadena de repetición de subunidades de proteínas idénticas llamada CsgA, que puede ser modificada mediante la adición de fragmentos de proteína llamados péptidos. Estos péptidos pueden capturar materiales no vivos, como nanopartículas de oro, incorporándolos en los biofilms.

Al programar las células para producir diferentes tipos de fibras curly bajo ciertas condiciones, los científicos fueron capaces de controlar las propiedades de los biofilms y crear nanocables de oro, produciendo biopelículas, y películas salpicadas de puntos cuánticos o diminutos cristales que exhiben propiedades de mecánica cuántica. También diseñaron células para que pudieran comunicarse entre sí y cambiar la composición de la biopelícula con el tiempo.

En primer lugar, el equipo del MIT deshabilitó la capacidad natural de las células bacterianas de producir CsgA, luego la reemplazó con un circuito de ingeniería genética que produce CsgA A pero sólo bajo ciertas condiciones, específicamente, cuando una molécula llamada AHL está presente. Esto puso la producción de fibra curly en manos de los investigadores, que pueden ajustar la cantidad de AHL en el entorno de las células. Cuando AHL está presente, las células secretan CsgA, que forma fibras curly que se unen en un biofilm, recubriendo la superficie en la que las bacterias están creciendo.

Luego, los investigadores diseñaron células de 'E. Coli' para producir CsgA etiquetado con péptidos compuestos por grupos del aminoácido histidina, pero sólo cuando una molécula llamada ATC está presente. Los dos tipos de células modificadas por ingeniería se pueden cultivar juntas en una colonia, permitiendo a los expertos controlar la composición del material de la biopelícula variando las cantidades de AHL y ATC en el medio ambiente. Si ambos están presentes , la película contiene una mezcla de fibras etiquetadas y sin etiquetar. Si se añaden nanopartículas de oro, las etiquetas de histidina se agarran a ellos, creando filas de nanocables de oro y una red que conduce electricidad.

Los investigadores también demostraron que las células pueden coordinarse entre sí para controlar la composición de la biopelícula. Estos expertos diseñaron células que producen CsgA sin etiquetar y AHL, que a su vez estimulan a otras células para comenzar a producir CsgA etiquetada con histidina.

"Es un sistema muy sencillo, pero lo que sucede con el tiempo es que se conseigue curly que está cada vez más etiquetada con partículas de oro. Esto demuestra que, efectivamente, se puede hacer que las células se comuniquen entre sí y se puede cambiar la composición de la materia con el tiempo", explica Lu. "En última instancia, esperamos emular cómo sistemas naturales, como el hueso, se forman", destaca.

Para añadir puntos cuánticos a las fibras curly, los investigadores diseñaron células que las producen junto con una etiqueta de péptido diferente, llamada SpyTag, que se une a los puntos cuánticos que están recubiertos con SpyCatcher, una proteína que es un socio de SpyTag. Estos materiales híbridos podrían ser clave para explorar su uso en aplicaciones de energía, como baterías y células solares, adelanta Lu.

Los investigadores están interesados en el recubrimiento de los biofilms con enzimas que catalizan la descomposición de la celulosa, lo cual podría ser útil para la conversión de residuos agrícolas para biocombustibles. Otras aplicaciones potenciales incluyen dispositivos de diagnóstico y andamios para la ingeniería de tejidos.


Publicado
http://www.europapress.es/ciencia/noticia-ingenieros-disenan-materiales-vivos-20140323190137.html

La descongelación del suelo ártico exacerba el cambio climático

El clima se está calentando en el Ártico al doble de velocidad que en el resto del mundo dando lugar a una estación de crecimiento de las plantas más larga y productiva, que captura carbono de la atmósfera y descongela el permafrost --el suelo siempre congelado--, que a su vez libera carbono a la atmósfera.

Se abre la puerta a la comunicación cuántica multilateral


En el mundo de la ciencia cuántica, Alice y Bob han estado hablando el uno al otro durante años. Charlie se unió a la conversación hace unos años, pero ahora, con una separación espacial, los científicos han medido que su comunicación se produce más rápido que la velocidad de la luz.

Foto: Fotones generados en laboratorio son enviados a diferentes receptores

Por primera vez, físicos del Instituto de Computación Cuántica (IQC) en la Universidad de Waterloo han demostrado la distribución de tres fotones entrelazados en tres lugares diferentes (denominados Alice, Bob y Charlie) a varios cientos de metros de distancia, lo que demuestra la no localidad cuántica para más de dos fotones entrelazados. Los resultados del experimento se publican en Nature Photonics este lunes.

Una vez descrita por Einstein como "acción fantasmal a distancia", este enredo de tres fotones conduce a interesantes posibilidades para la comunicación cuántica multilateral.

La no localidad describe la capacidad de las partículas para saber instantáneamente sobre el estado de cada una, incluso cuando están separadas por grandes distancias. En el mundo cuántico, esto significa que podría ser posible transferir información de forma instantánea, más rápido que la velocidad de la luz.

Esto contraviene lo que Einstein llamó el "principio de la acción local", la regla de que los objetos distantes no pueden tener una influencia directa entre sí, y que un objeto está directamente influenciado sólo por su entorno inmediato.

Para probar realmente que las variables locales ocultas no son responsables de la correlación entre los tres fotones , los científicos necesitaban el experimento realizado en el IQC para cerrar lo que se conoce como la laguna localidad. Consiguieron la separación de los fotones entrelazados de una manera que no permitiera una señal para coordinar el comportamiento de los fotones, radiando estos fotones entrelazados a remolques estacionados a varios cientos de metros de su laboratorio(ilustrado en la imagen adjunta).

El experimento demostró la distribución de las tres partículas entrelazadas, lo que eventualmente se pueden utilizar para hacer algo más que la comunicación en parejas donde sólo una de las partes puede comunicarse con otra. Se abre la posibilidad de protocolos de comunicación cuántica multilaterales, incluyendo distribución de clave cuántica (QKD), criptografía y compartición de secretos cuántica.

"El resultado interesante es que ahora tenemos la capacidad de hacer algo más que una comunicación cuántica de pareja", dijo el autor principal del estudio Chris Erven, un ex estudiante de doctorado del IQC y asistente de investigación en la Universidad de Bristol.

ENLACES RELACIONADOS: Experiment opens the door to multi-party quantum communication

Publicado
http://www.europapress.es/ciencia/noticia-abre-puerta-comunicacion-cuantica-multilateral-20140324105600.html